Introduction
GAN
大领域内的资料整理,会逐渐地更新划分成多个小领域,可能有多个papers包含在不同的领域中。
Papers
Uncoditional GANs
Unconditional GAN 是最原始的GAN的任务,对目标的图片的分布建模,学习映射。
- Generative Adversarial Nets. ( GAN )
- Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks ( LPGAN )
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ( DCGAN )
- Progressive Growing of GANs for Improved Quality, Stability and Variation. ( PG-GAN )
- A Style-Based Generator Architecture for Generative Adversarial Networks. ( Style-GAN )
- Analyzing and Improving the Image Quality of StyleGAN. ( Style-GAN2 )
Conditional GANs
Conditonal GANs 是加入可控隐变量(监督信息,很多情况下是分类标签)的GAN的结构,Conditional GANs 的应用比 Unconditional GANs 的应用范围更广,而且 Conditional GANs 可以用于高质量的多类图像分布建模。
- Conditional Generative Adversarial Nets. (cGAN)
- InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. (InfoGAN) [paper]
- Conditional Image Synthesis with Auxiliary Classifier GANs. (ACGAN)
- Stacked Generative Adversarial Networks. ( StackedGAN )
- Spectral Normalization for Generative Adversarial Networks. ( SN-GAN )
- cGAN with Projection Discriminator.
- Self-Attention Generative Adversarial Networks. ( SA-GAN )
- Large Scale GAN Traning for high fidelity natural image synthesis. ( BigGAN )
- Large Scale Adversarial Representation Learning. ( BigBiGAN )
- LOGAN: Latent Optimisatoin for Generative Adversarial Networks.
Improving GANs
改进GAN的技术,考虑GAN最主要的两个问题:mode collapse 和 unstable training。 可以考虑的解决方法有:改进loss,改进模型结构等。
Unstable Training
- Wasserstain Generative Adversarial Networks. ( WGAN )
- Improved Traning of Wasserstain GANs ( WGAN-GP )
- Least Squares Generative Adversarial Networks ( LSGAN )
- f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization.
Mode Collapse
- Pacgan: The power of two samples in generative adversarial networks. 2017.
Minibatch Discriminator
: Improved techniques for training GAN. 2016.Minibatch Stddev Layer
: Progressive Growing of GANs for Improved Quality, Stability and Variation. 2017.
Disentangled Representation Learning
Disentangled Representation Learning 和 VAE
,Conditional GAN
的联系十分密切。针对的是生成模型的生成效果的语义可控性。
- InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.
- Adversarial Feature Learning ( BiGAN )
- On the “steerability” of generative adversarial networks. [paper] [codes]
- Interpreting the Latent Space of GANs for Semantic Face Editing. [paper] [codes]
Semi-supervised Learning
GAN可以用于Semi-supervised Learning,对仅含有部分、或者少量标签的数据集。
Image2Image Translation
Image2Image 是GAN中非常重要的一类任务,而且它包含的子任务十分广泛,而且Text2Image、Video2Video等其实都可以归为这一类,它们对GAN的应用具有非常相似的地方。
- Image-to-Image Translation with Conditional Generative Adversarial Networks. ( pix2pix )
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ( CycleGAN )
- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. ( StarGAN )
- U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer Instance Normalization for Image-to-Image Translation.
Applications of GANs
着重对GAN的某一任务(应用)的研究,这一部分和最后一部分有重合。
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. ( SRGAN for super-resolution )
- GANimation: Anatomically-aware Facial Animation from a Single Image.
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution.
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization.
- Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. ( Markovian GAN)
- SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis.
GAN and few-shot learning
GAN 和 few-shot learning 的结合,主要关注 few-shot generation。
- InGAN: Capturing and Retargeting the “DNA” of a Natural Image.
- SinGAN: Learning a Generative Model from a Single Natural Image.
- Few-Shot Adversarial Learning of Realistic Neural Talking Head Models.
- MetaGAN: An Adversarial Approach to Few-Shot Learning. (实际上这篇主要不是讲GAN,而是将GAN用于few-shot learning的classification)
Evaluation of GANs
GAN生成图片的质量的衡量是一个still open problem,但是仅仅针对 GAN Evalutaion 的papers在我看过的papers中不多,大多都是提一嘴的程度。
具体的方法如下:
IS
: Improved techniques for training GAN.Slice-Wasserstain-Distance
: Progressive Growing of GANs for Improved Quality, Stability and Variation.Wasserstain-Distance
: Wasserstain Generative Adversarial Networks.FID
: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium.MS-SSIM
: Conditional Image Synthesis with Auxiliary Classifier GANs. (ACGAN)PPL
: StyleGANLPIPS
: The unreasonable effectiveness of deep features as a perceptual metric. CVPR2018.
将他们可以分类为:
- 传统的图像质量评价方法:MS-SSIM, LPIPS.
- 基于Inception的模型:IS, FID.
- 其他: PPL, Wasserstain-Distance, Sliced-WD.
Technics
在GAN中会用到的特殊结构、结构。
Conditional Batch Norm
: Modulating early visual processing by language. NIPS2017. CGAN用于注入噪声的方法。
Unsorted
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. ( StackGAN )
- Boundary Equilibrium GANs. ( BEGAN )
- Energy-based Generative Adversarial Networks. ( EBGAN )
- Real or not real, that is the question. ( RealnessGAN )
- A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. ( GAN Review in 2020 )
- Invertible Conditional GANs for image editing. (IcGAN) [paper] [codes]
加入Encoder结构编码图像的属性,这些属性又以cGAN的方式注入到GAN中生成,可以完成属性修改操作。 - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. (DiscoGAN) [codes] [paper] CycleGAN 同期工作,域到域的Image2Image任务。
- DualGAN.
- Adversarial Latent Autoencoders (ALAE) [codes] [paper]
Interesting Papers
pass
Other Useful Material about GAN
- Tips and tricks to make GANs work: [materials]
- GAN 汇总1: [really-awesome-gan]
Projects of Application
特殊的应用,或者是一类的应用任务。
- Image2Image:可以用于各种图像处理任务。
- 画风的图像风格转换GAN. [project] [paper]
- style2paints: 线稿上色. [project] Two-stage Sketch Colorization. [paper]
- clourise:黑白照片转彩色照片 [homepage]
- Virtual Try-On: 虚拟试衣。
- aiportraits: [homepage] 人脸转绘画。
- AnimeGAN: [codes] 轻量级的图像转绘画风格的 GAN。
- 3D photo Inpaiting: [post] [paper]