Introduction

GAN大领域内的资料整理,会逐渐地更新划分成多个小领域,可能有多个papers包含在不同的领域中。

Papers


Uncoditional GANs


Unconditional GAN 是最原始的GAN的任务,对目标的图片的分布建模,学习映射zx{z \to x}

  • Generative Adversarial Nets. ( GAN )
  • Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks ( LPGAN )
  • Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ( DCGAN )
  • Progressive Growing of GANs for Improved Quality, Stability and Variation. ( PG-GAN )
  • A Style-Based Generator Architecture for Generative Adversarial Networks. ( Style-GAN )
  • Analyzing and Improving the Image Quality of StyleGAN. ( Style-GAN2 )

Conditional GANs


Conditonal GANs 是加入可控隐变量(监督信息,很多情况下是分类标签)的GAN的结构,Conditional GANs 的应用比 Unconditional GANs 的应用范围更广,而且 Conditional GANs 可以用于高质量的多类图像分布建模。

  • Conditional Generative Adversarial Nets. (cGAN)
  • InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. (InfoGAN) [paper]
  • Conditional Image Synthesis with Auxiliary Classifier GANs. (ACGAN)
  • Stacked Generative Adversarial Networks. ( StackedGAN )
  • Spectral Normalization for Generative Adversarial Networks. ( SN-GAN )
  • cGAN with Projection Discriminator.
  • Self-Attention Generative Adversarial Networks. ( SA-GAN )
  • Large Scale GAN Traning for high fidelity natural image synthesis. ( BigGAN )
  • Large Scale Adversarial Representation Learning. ( BigBiGAN )
  • LOGAN: Latent Optimisatoin for Generative Adversarial Networks.

Improving GANs


改进GAN的技术,考虑GAN最主要的两个问题:mode collapse 和 unstable training。 可以考虑的解决方法有:改进loss,改进模型结构等。

Unstable Training

  • Wasserstain Generative Adversarial Networks. ( WGAN )
  • Improved Traning of Wasserstain GANs ( WGAN-GP )
  • Least Squares Generative Adversarial Networks ( LSGAN )
  • f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization.

Mode Collapse

  • Pacgan: The power of two samples in generative adversarial networks. 2017.
  • Minibatch Discriminator: Improved techniques for training GAN. 2016.
  • Minibatch Stddev Layer: Progressive Growing of GANs for Improved Quality, Stability and Variation. 2017.

Disentangled Representation Learning


Disentangled Representation Learning 和 VAEConditional GAN 的联系十分密切。针对的是生成模型的生成效果的语义可控性。

  • InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.
  • Adversarial Feature Learning ( BiGAN )
  • On the “steerability” of generative adversarial networks. [paper] [codes]
  • Interpreting the Latent Space of GANs for Semantic Face Editing. [paper] [codes]

Semi-supervised Learning


GAN可以用于Semi-supervised Learning,对仅含有部分、或者少量标签的数据集。

Image2Image Translation


Image2Image 是GAN中非常重要的一类任务,而且它包含的子任务十分广泛,而且Text2Image、Video2Video等其实都可以归为这一类,它们对GAN的应用具有非常相似的地方。

  • Image-to-Image Translation with Conditional Generative Adversarial Networks. ( pix2pix )
  • Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ( CycleGAN )
  • StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. ( StarGAN )
  • U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer Instance Normalization for Image-to-Image Translation.

Applications of GANs


着重对GAN的某一任务(应用)的研究,这一部分和最后一部分有重合。

  • Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. ( SRGAN for super-resolution )
  • GANimation: Anatomically-aware Facial Animation from a Single Image.
  • Perceptual Losses for Real-Time Style Transfer and Super-Resolution.
  • Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization.
  • Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. ( Markovian GAN)
  • SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis.

GAN and few-shot learning


GAN 和 few-shot learning 的结合,主要关注 few-shot generation。

  • InGAN: Capturing and Retargeting the “DNA” of a Natural Image.
  • SinGAN: Learning a Generative Model from a Single Natural Image.
  • Few-Shot Adversarial Learning of Realistic Neural Talking Head Models.
  • MetaGAN: An Adversarial Approach to Few-Shot Learning. (实际上这篇主要不是讲GAN,而是将GAN用于few-shot learning的classification)

Evaluation of GANs


GAN生成图片的质量的衡量是一个still open problem,但是仅仅针对 GAN Evalutaion 的papers在我看过的papers中不多,大多都是提一嘴的程度。

具体的方法如下:

  • IS: Improved techniques for training GAN.
  • Slice-Wasserstain-Distance: Progressive Growing of GANs for Improved Quality, Stability and Variation.
  • Wasserstain-Distance: Wasserstain Generative Adversarial Networks.
  • FID: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium.
  • MS-SSIM: Conditional Image Synthesis with Auxiliary Classifier GANs. (ACGAN)
  • PPL: StyleGAN
  • LPIPS: The unreasonable effectiveness of deep features as a perceptual metric. CVPR2018.

将他们可以分类为:

  • 传统的图像质量评价方法:MS-SSIM, LPIPS.
  • 基于Inception的模型:IS, FID.
  • 其他: PPL, Wasserstain-Distance, Sliced-WD.

Technics


在GAN中会用到的特殊结构、结构。

  • Conditional Batch Norm: Modulating early visual processing by language. NIPS2017. CGAN用于注入噪声的方法。

Unsorted


  • StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. ( StackGAN )
  • Boundary Equilibrium GANs. ( BEGAN )
  • Energy-based Generative Adversarial Networks. ( EBGAN )
  • Real or not real, that is the question. ( RealnessGAN )
  • A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. ( GAN Review in 2020 )
  • Invertible Conditional GANs for image editing. (IcGAN) [paper] [codes]
    加入Encoder结构编码图像的属性,这些属性又以cGAN的方式注入到GAN中生成,可以完成属性修改操作。
  • Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. (DiscoGAN) [codes] [paper] CycleGAN 同期工作,域到域的Image2Image任务。
  • DualGAN.
  • Adversarial Latent Autoencoders (ALAE) [codes] [paper]

Interesting Papers

pass

Other Useful Material about GAN


Projects of Application


特殊的应用,或者是一类的应用任务。

  • Image2Image:可以用于各种图像处理任务。
  • 画风的图像风格转换GAN. [project] [paper]
  • style2paints: 线稿上色. [project] Two-stage Sketch Colorization. [paper]
  • clourise:黑白照片转彩色照片 [homepage]
  • Virtual Try-On: 虚拟试衣。
    • 一篇知乎上的Review. [page]
    • Towards Multi-Pose Guided Virtual Try-on Network. ICCV2019. [paper]
    • VITON: An Image-Based Virtual Try-On Network. CVPR2018. [paper] 但是好像作者用的是Encoder-Decoder结构哈哈。
    • VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation. [paper]
  • aiportraits: [homepage] 人脸转绘画。
  • AnimeGAN: [codes] 轻量级的图像转绘画风格的 GAN。
  • 3D photo Inpaiting: [post] [paper]